A distinct representation of three-dimensional shape in macaque anterior intraparietal area: fast, metric, and coarse.
نویسندگان
چکیده
Differences in the horizontal positions of retinal images--binocular disparity--provide important cues for three-dimensional object recognition and manipulation. We investigated the neural coding of three-dimensional shape defined by disparity in anterior intraparietal (AIP) area. Robust selectivity for disparity-defined slanted and curved surfaces was observed in a high proportion of AIP neurons, emerging at relatively short latencies. The large majority of AIP neurons preserved their three-dimensional shape preference over different positions in depth, a hallmark of higher-order disparity selectivity. Yet both stimulus type (concave-convex) and position in depth could be reliably decoded from the AIP responses. The neural coding of three-dimensional shape was based on first-order (slanted surfaces) and second-order (curved surfaces) disparity selectivity. Many AIP neurons tolerated the presence of disparity discontinuities in the stimulus, but the population of AIP neurons provided reliable information on the degree of curvedness of the stimulus. Finally, AIP neurons preserved their three-dimensional shape preference over different positions in the frontoparallel plane. Thus, AIP neurons extract or have access to three-dimensional object information defined by binocular disparity, consistent with previous functional magnetic resonance imaging data. Unlike the known representation of three-dimensional shape in inferior temporal cortex, the neural representation in AIP appears to emphasize object parameters required for the planning of grasping movements.
منابع مشابه
Selectivity for three-dimensional contours and surfaces in the anterior intraparietal area.
The macaque anterior intraparietal area (AIP) is crucial for visually guided grasping. AIP neurons respond during the visual presentation of real-world objects and encode the depth profile of disparity-defined curved surfaces. We investigated the neural representation of curved surfaces in AIP using a stimulus-reduction approach. The stimuli consisted of three-dimensional (3-D) shapes curved al...
متن کاملCoding of shape and position in macaque lateral intraparietal area.
The analysis of object shape is critical for both object recognition and grasping. Areas in the intraparietal sulcus of the rhesus monkey are important for the visuomotor transformations underlying actions directed toward objects. The lateral intraparietal (LIP) area has strong anatomical connections with the anterior intraparietal area, which is known to control the shaping of the hand during ...
متن کاملTime course of information representation of macaque AIP neurons in hand manipulation task revealed by information analysis.
We used mutual information analysis of neuronal activity in the macaque anterior intraparietal area (AIP) to examine information processing during a hand manipulation task. The task was to reach-to-grasp a three-dimensional (3D) object after presentation of a go signal. Mutual information was calculated between the spike counts of individual neurons in 50-ms-wide time bins and six unique shape ...
متن کاملCoding of shape features in the macaque anterior intraparietal area.
The exquisite ability of primates to grasp and manipulate objects relies on the transformation of visual information into motor commands. To this end, the visual system extracts object affordances that can be used to program and execute the appropriate grip. The macaque anterior intraparietal (AIP) area has been implicated in the extraction of affordances for the purpose of grasping. Neurons in...
متن کاملSelectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex.
The anterior part of the macaque inferior temporal cortex, area TE, occupies a large portion of the temporal lobe and is critical for object recognition. Thus far, no relation between anatomical subdivisions of TE and neuronal selectivity has been described. Here, we present evidence that neurons selective for three-dimensional (3D) shape are concentrated in the lower bank of the superior tempo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 34 شماره
صفحات -
تاریخ انتشار 2009